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ABSTRACT

Direct numerical simulation data bases for compressible homogeneous shear 
ow are used to

evaluate the performance of recently proposed Reynolds stress closures for compressible turbulence.

Three independent pressure-strain models are considered along with a variety of explicit compress-

ible corrections that account for dilatational dissipation and pressure-dilatation e�ects. The ability

of the models to predict both time evolving �elds and equilibrium states is systematically tested.

Consistent with earlier studies, it is found that the addition of simple dilatational models allows

for the prediction of the reduced growth rate of turbulent kinetic energy in compressible homoge-

neous shear 
ow. However, a closer examination of the equilibrium structural parameters uncovers

a major problem. None of the models are able to predict the dramatic increase in the normal

Reynolds stress anisotropies or the signi�cant decrease in the Reynolds shear stress anisotropy that

arise from compressible e�ects. The physical origin of this de�ciency is attributed to the neglect of

compressible terms in the modeling of the deviatoric part of the pressure-strain correlation.
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1. INTRODUCTION

The need to predict supersonic and hypersonic turbulent 
ows of aerodynamic importance has,

in recent years, led to new research initiatives in compressible turbulence modeling. A major stum-

bling block in the development of improved compressible turbulence models is the lack of detailed

experimental data for the compressible turbulence statistics in basic high-speed compressible 
ows.

Experimental limitations currently make it infeasible to obtain detailed measurements of any tur-

bulence statistics beyond the mean velocity and Reynolds shear stress in supersonic turbulent 
ows.

This makes it virtually impossible to pinpoint the origin of de�cient model predictions when they

arise. In Reynolds averaged calculations of complex supersonic turbulent 
ows, erroneous predic-

tions for the mean velocity �eld may arise from modeling errors in the Reynolds stresses that can

be traced to a variety of possible de�ciencies in the treatment of compressibility e�ects.

During the past four years, direct numerical simulation (DNS) data bases of some basic su-

personic turbulent 
ows have become available [1, 2], wherein the full compressible Navier-Stokes,

continuity and energy equations are solved numerically with all turbulent scales resolved. Most

notable among these are the DNS data bases for compressible homogeneous shear 
ow (see Blais-

dell, Mansour and Reynolds [3] and Sarkar, Erlebacher and Hussaini [4,5]). Homogeneous shear


ow is an important building-block 
ow since it encapsulates some of the important features of an

equilibrium turbulent boundary layer in a simpli�ed setting that is unencumbered by the e�ects of

turbulent di�usion or wall blocking. It has been an extremely useful test case for the calibration

and screening of turbulence models for incompressible 
ows [6-8]. However, no comprehensive test

of compressible Reynolds stress models has been made using these new DNS data bases for com-

pressible homogeneous shear 
ow. This establishes the motivation for the present paper. Prior to

this study, only very limited comparisons of compressible turbulence models have been made using

these DNS results [9,10].

In this paper, the DNS data base of Blaisdell, Mansour and Reynolds [3] for compressible

homogeneous shear 
ow will be used to critically evaluate recently proposed compressible Reynolds

stress closures. Full second-order closures will be considered that explicitly account for high-speed

compressible e�ects. Variable density extensions of three incompressible pressure-strain models

due to Launder and co-workers [11, 12] and Speziale, Sarkar and Gatski [13] will be tested along

with models for the compressible dissipation and pressure-dilatation that were recently proposed

by Sarkar et al [14,15] and Zeman [16,17]. The ability of each model to predict time-evolving

�elds and equilibrium states such as the Reynolds stress anisotropies will be assessed in detail. An

attempt will also be made to understand the physical origin of de�cient model predictions. In this

regard, some important results will be uncovered that were overlooked in previous studies. These

issues will be discussed fully in the sections to follow and a recommendation will be made for the

development of improved models.
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2. THEORETICAL BACKGROUND

We will consider the mean turbulent 
ow of an ideal gas governed by the compressible Navier-

Stokes equations. The mass density � is decomposed into standard ensemble mean and 
uctuating

parts, respectively, as follows:

� = �+ �0: (2:1)

The velocity �eld ui and temperature T are decomposed into standard ensemble mean and 
uctu-

ating parts given by

ui = ui + u0i; T = T + T 0

(2:2)

or into mass-weighted mean and 
uctuating parts given by

ui = ~ui + u00i ; T = ~T + T 00: (2:3)

For any 
ow variable F , the quantity ~F � �F=� denotes the Favre or mass-weighted average given

that an overbar represents a standard ensemble mean.

The Favre-averaged continuity, Navier-Stokes and energy equations take the form [18, 19]

@�

@t
+ (�~ui);i = 0 (2:4)

@

@t
(�~ui) + (�~ui~uj);j = �p;i (2:5)

@

@t
(�Cv

~T) + (�Cv
~T ~ui);i = �p~ui;i � p0u0i;i + � (2:6)

in homogeneous turbulent 
ows where the mean velocity gradients and all higher-order statistics

are spatially uniform. In Eqs. (2.5) and (2.6),

p = �RT (2:7)

� = �ijui;j (2:8)

�ij = �
2

3
�uk;k�ij + �(ui;j + uj;i) (2:9)

are, respectively, the thermodynamic pressure, viscous dissipation and viscous stress tensor; R is

the ideal gas constant, Cv is the speci�c heat at constant volume, � is the dynamic viscosity of the

gas, and ( );i � @( )=@xi denotes a spatial gradient. Since the turbulent mass 
ux �u00i vanishes in

compressible homogeneous turbulence, it follows that [19]

� = �ij ~ui;j + �" � �" (2:10)

at high turbulence Reynolds numbers where " � �0iju
0

i;j=� is the turbulent dissipation rate.
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Following the recent work of Sarkar et al [14] and Zeman [16], the turbulent dissipation rate

can be decomposed into solenoidal and dilatational parts as follows:

" = "s + "c (2:11)

where, for homogeneous turbulence,

"s = �!0

i!
0

i=�; "c =
4

3
�(u0i;i)

2=� (2:12)

are, respectively, the solenoidal and compressible (or dilatational) parts of the turbulent dissipa-

tion rate given that !0

i is the 
uctuating vorticity. Here, "s represents the turbulent dissipation

arising from the traditional energy cascade which is solenoidal (i.e., vortical) in character; "c rep-

resents the turbulent dissipation arising from purely compressible or dilatational modes ("c = 0 for

incompressible turbulent 
ows). For homogeneous turbulence, this decomposition is unique.

Since the mean pressure

p = �R ~T ; (2:13)

it is clear from (2.4)-(2.10) that closure of the mean 
ow equations is achieved in compressible

homogeneous turbulence, at high Reynolds numbers, once models for the pressure-dilatation, com-

pressible dissipation and solenoidal dissipation are provided. The determination of these correla-

tions also requires information on the turbulence intensity level and, hence, on the Reynolds stress

tensor. The Favre-averaged Reynolds stress tensor �ij �
gu00i u00j is a solution of the transport equation

[18, 19]

� _�ij = ���ik~uj;k � ��jk~ui;k + �ij �
2

3
�"�ij +

2

3
p0u0k;k�ij (2:14)

which is exact for compressible homogeneous turbulence given that

�ij = p0(u0i;j + u0j;i)�
2

3
p0u0k;k�ij

�

�
�0iku

0

j;k + �0jku
0

i;k �
2

3
�0klu

0

l;k�ij

� (2:15)

is the di�erence between the deviatoric parts of the pressure-strain correlation and dissipation rate

tensor. Eq. (2.14) contains the pressure-dilatation correlation p0u0k;k as well as the compressible

and solenoidal parts of the dissipation rate tensor since " = "s + "c. Hence, a full Reynolds stress

closure is achieved in compressible turbulence if models are provided for:

(i) The di�erence between the deviatoric parts of the pressure-strain correlation and dissipation

rate tensor, �ij .

(ii) The pressure-dilatation correlation p0u0i;i.

(iii) The solenoidal dissipation "s.
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(iv) The compressible dissipation "c.

In compressible homogeneous shear 
ow, the mean velocity gradient tensor is given by

~ui;j = S�i1�j2 (2:16)

where S is the shear rate which is constant. The mean density is constant whereas the mean

temperature is a function of time alone, i.e.,

� = constant (2:17)

~T = ~T (t): (2:18)

Eqs. (2.16) and (2.17), which are the same as their incompressible counterparts, identically satisfy

the mean continuity and mean momentum equations (2.4) and (2.5). Assuming that the mean

speci�c heat is constant, the Reynolds-averaged energy equation (2.6) simpli�es to the form

�Cv
_~T = �p0u0i;i + �" (2:19)

for a compressible homogeneous shear 
ow at high Reynolds numbers.

The substitution of (2.16) into the contraction of (2.14) yields the turbulent kinetic energy

equation

� _K = �P + p0u0i;i � �" (2:20)

where K � 1

2

gu00i u00i is the Favre-averaged turbulent kinetic energy and P � ��12S is the turbulence

production. Equation (2.20) can be combined with (2.19) to yield a transport equation for the

turbulence Mach number. This transport equation takes the form

_Mt =
Mt

2K
P +

Mt

2�K

�
1 +

1

2


(
 � 1)M2

t

�
(p0u0i;i � �") (2:21)

where 
 � Cp=Cv is the ratio of speci�c heats and Mt �

q
2K=
R ~T is the turbulent Mach number.

Recently proposed models for the four turbulence correlations that are needed for closure { namely,

"s, "c; p0u
0

i;i and �ij { will be discussed in the next section.
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3. THE TURBULENCE MODELS TO BE TESTED

In almost all existing compressible second-order closures, the deviatoric part of the pressure-

strain correlation is modeled as a variable density extension of its incompressible counterpart.

Furthermore, as in the majority of incompressible turbulence models, the deviatoric part of the

dissipation rate tensor is neglected by invoking the Kolmogorov assumption of local isotropy [18,

19]. This leads to a hierarchy of models that are of the general form:

�ij = �"sAij(b) + �KMijkl(b)(~uk;l �
1

3
~um;m�kl) (3:1)

where

bij =
gu00i u00j � 1

3

gu00ku00k�ijgu00mu00m (3:2)

is the Reynolds stress anisotropy tensor. In (3.1),Aij andMijkl are identical to their incompressible

forms; compressibility e�ects are only accounted for through changes in the mean density. Since

the mean density � is constant in homogeneous shear 
ow { and the mean dilatation ~ui;i is zero { it

follows that the hierarchy of pressure-strain models (3.1) is completely identical to its incompressible

counterpart. The consequences of this will be discussed later.

In this paper, variable density extensions of three incompressible pressure-strain models will be

considered: the Launder, Reece and Rodi [11] model, the Fu, Launder and Tselepidakis [12] model

and the Speziale, Sarkar and Gatski [13] model. The �rst model is chosen since it is the most widely

used pressure-strain model; the last two models are chosen since they have recently been shown to

perform the best among a variety of existing models for incompressible homogeneous shear 
ow [7

, 8]. The detailed form of these models are provided below.

Launder, Reece & Rodi Model

�ij = �C1�"sbij +
4

5
�K

�
~Sij �

1

3

~Skk�ij

�
+ C2�K

�
bik ~Sjk

+bjk ~Sik �
2

3
bkl ~Skl�ij

�
+ C3�K(bik ~!jk + bjk ~!ik)

(3:3)

where

~Sij =
1

2
(~ui;j + ~uj;i); ~!ij =

1

2
(~ui;j � ~uj;i) (3:4)

C1 = 3:0; C2 = 1:75; C3 = 1:31 (3:5)
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Fu, Launder & Tselepidakis Model

�ij = �C1�"sbij + C2�"s

�
bikbkj �

1

3
bklbkl�ij

�

+
4

5
�K

�
~Sij �

1

3

~Skk�ij

�
+ 1:2�K

�
bik ~Sjk

+bjk ~Sik �
2

3
bkl ~Skl�ij

�
+
26

15
�K(bik ~!jk

+bjk ~!ik) +
4

5
�K(bikbkl ~Sjl + bjkbkl ~Sil

�2bik ~Sklblj � 3bkl ~Sklbij)

+
4

5
�K(bikbkl ~!jl + bjkbkl ~!il)�

14

5
�K[8II(bik~!jk

+bjk ~!ik)] + 12(bikbkl ~!lmbmj + bjkbkl ~!lmbmi)]

(3:6)

where

C1 = 2� 120IIF 1=2� 2F 1=2; C2 = 144IIF 1=2
(3:7)

II = �
1

2
bijbij ; III =

1

3
bijbjkbki (3:8)

F = 1 + 9II + 27III (3:9)

Speziale, Sarkar & Gatski Model

�ij = �(C1�"s + C�

1
�P)bij + C2�"s

�
bikbkj �

1

3
bklbkl�ij

�

+(C3 � C�

3
II

1=2
b )�K

�
~Sij �

1

3

~Skk�ij

�

+C4�K

�
bik ~Sjk + bjk ~Sik �

2

3
bkl ~Skl�ij

�

+C5�K(bik ~!jk + bjk ~!ik)

(3:10)

where

C1 = 3:4; C�

1
= 1:80; C2 = 4:2 (3:11)

C3 =
4

5
; C�

3
= 1:30; C4 = 1:25 (3:12)

C5 = 0:40; IIb = bijbij ; P = ��ij ~ui;j : (3:13)

These models will hereafter be referred to as the LRR, FLT and SSG models, respectively.
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Since the mean dilatation ~ui;i is zero in homogeneous shear 
ow, virtually all existing model

transport equations for the solenoidal dissipation are of the form [19 - 21]

_"s = C"1
"s

K
P � C"2

"2s
K

(3:14)

in compressible homogeneous shear 
ow. This equation is identical to its incompressible coun-

terpart. In (3.14), P � ��12S is the turbulence production and C"1 and C"2 are constants (in

the SSG model, C"1 = 1:44 and C"2 = 1:83 whereas in the LRR and FLT models, C"1 = 1:44

and C"2 = 1:90). Two recent models for the compressible dissipation will be considered that were

proposed by Sarkar et al [14] and Zeman [16]. These models are algebraic and of the general form

"c = f(Mt)"s (3:15)

where Mt is the turbulence Mach number de�ned earlier. In the Sarkar et al [14] model

"c = �1M
2

t "s (3:16)

which is obtained from an asymptotic analysis that is formally valid for small turbulent Mach num-

bers. The constant �1 in (3.16) was determined to be approximately 0.5 based on direct numerical

simulations of homogeneous turbulence [15]. On the other hand, the compressible dissipation rate

model of Zeman [16] is based on an analysis that incorporates the e�ects of eddy shocklets. For

homogeneous shear 
ow, this model takes the form [20]

"c =
n
1� exp(�[(Mt � 0:25)=0:8]2)

o
"s (3:17)

for Mt � 0:25; "c = 0 for Mt < 0:25.

The pressure-dilatation model that we will primarily consider is that due to Sarkar [15]. This

model is algebraic and takes the following simple form in homogeneous shear 
ow:

p0u0i;i = ��2�PMt + �3�"sM
2

t (3:18)

where �2 and �3 are constants that take on the values of 0.15 and 0.2, respectively. Some limited

comparisons will also be made with the pressure-dilatation model of Zeman [17] which is given by

p0u0i;i = (p
)�1

"
p2 � p2e
�f

+

�
5� 3


12

�
p2~ui;i

#
= �

1

2

d

dt
(p2=
p) (3:19)

where

�f = 0:4
K

"
Mt (3:20)

and

p2e = 2�2K
R ~T

 
M2

t +M4

t

1 +M2

t +M4

t

!
: (3:21)
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Of course, in (3.19), p � �R ~T and ~ui;i = 0 for homogeneous shear 
ow. In the next section, a

comparison of computed results obtained from these models for compressible homogeneous shear


ow will be made.

4. DISCUSSION OF RESULTS

The transport equations (2.6), (2.14) and (3.14) { incorporating the models discussed in Section

3 { were solved numerically for compressible homogeneous shear 
ow using a fourth-order accurate

Runge-Kutta numerical integration scheme. Comparisons will be made with the direct numerical

simulations (DNS) of compressible homogeneous shear 
ow by Blaisdell et al [3]. Both time-evolving

�elds and equilibrium states will be compared with DNS results. Comparisons will be made with

run SHA 192 of Blaisdell et al [3] since it is the best resolved run that is of long duration (until

St � 24). It will be shown that, consistent with the DNS, the models predict that the turbulent

kinetic energy, turbulent dissipation rate and mean temperature grow exponentially with time. All

structural parameters such as the anisotropy tensor bij and turbulent Mach number Mt achieve

equilibrium values that are independent of the initial conditions.

First, we will consider model predictions for the case where there are no explicit dilatational

terms. This is done for one major reason: until very recently, the vast majority of Reynolds stress

calculations of compressible turbulent shear 
ows were conducted with variable density extensions of

incompressible models where explicit turbulent dilatational terms were not included. Consequently,

a benchmark is established for assessing the performance of the recently proposed dilatational

models. In Figure 1, the time evolution of the turbulent kinetic energy predicted by variable

density extensions of the LRR, FLT and SSG models { with compressible dissipation and pressure-

dilatation e�ects neglected { are compared with DNS results of Blaisdell et al [3] (run SHA 192).

Here, K� � K=K0 and t
� � St are the dimensionless turbulent kinetic energy and the dimensionless

time, respectively, where a subscript 0 denotes the initial value. From these results, it is clear that all

of the models drastically overpredict the growth rate of the turbulent kinetic energy { a de�ciency

that arises from the complete neglect of turbulent dilatational e�ects as discussed by previous

authors [14, 15, 19]. In Figures 2-3, the model predictions for the time evolution of the turbulent

dissipation rate ("� = "="0) and turbulent Mach number (Mt) are displayed. Here, as with the

results shown in Figure 1 for the turbulent kinetic energy, the calculations are made for St � 2 in

order to avoid the unphysical early transient of the DNS which lasts for approximately one eddy

turnover time due to the fact that the 
ow is initially seeded with an arti�cial random Gaussian

�eld. It is obvious from these results that the models substantially overpredict the turbulent

dissipation rate and turbulent Mach number. In regard to the latter, highly unphysical equilibrium

turbulence Mach numbers greater than 1.5 are predicted. This is true for both the FLT and SSG

models which yield excellent predictions for incompressible homogeneous shear 
ow. Consequently,

8



it is clear that variable density extensions of incompressible Reynolds stress models, with turbulent

dilatational e�ects neglected, cannot properly describe compressible homogeneous shear 
ow { a

conclusion consistent with previous �ndings. The compressible dissipation and pressure-dilatation

correlation give rise to a signi�cant reduction in the growth rate of the turbulent kinetic energy for

compressible homogeneous shear 
ow.

In Figure 4, computed results for the turbulent kinetic energy obtained from the LRR, FLT

and SSG models { with the compressible dissipation and pressure-dilatation models of Sarkar et

al [14, 15] { are compared with DNS results. With the addition of these turbulent dilatational

terms, the FLT and SSG models are now able to properly predict the reduced growth rate of the

turbulent kinetic energy that arises from compressibility e�ects in homogeneous shear 
ow. The

LRR model overpredicts the growth rate of the turbulent kinetic energy by an amount comparable

to that which has been documented for incompressible homogeneous shear 
ow (Speziale, Gatski

and Mac Giolla Mhuiris [7] showed that the LRR model overpredicts the growth rate by about

25% for the incompressible case). The computed time evolutions of the turbulent dissipation rate

are compared with DNS results in Figure 5. Although the dissipation rate is overpredicted, the

inclusion of the dilatational models of Sarkar leads to a substantial improvement over the results

shown in Figure 2. The computed model predictions for the time evolution of the turbulence Mach

number are compared with DNS results in Figure 6. With the addition of the dilatational models of

Sarkar, the FLT and SSG models now yield remarkably good predictions for the turbulence Mach

number as illustrated by these results.

Computed results for the LRR, FLT and SSG models with the addition of the compressible

dissipation and pressure-dilatation models of Zeman [16, 17] will now be considered. Model predic-

tions for the time evolution of the turbulent kinetic energy, turbulent dissipation rate and turbulent

Mach number are compared with DNS results in Figures 7-9. Most notably, the predictions of the

FLT and SSG models for the turbulent kinetic energy and turbulent Mach number are comparably

good to those obtained using the dilatational models of Sarkar. Alternative tests of the Zeman mod-

els were recently reported for compressible homogeneous shear 
ow that are comparably favorable

[22].

In Figures 10(a)-10(c), computed results for the independent non-vanishing components of the

Reynolds stress anisotropy tensor obtained from the LRR, FLT and SSG models { using the di-

latational models of Sarkar { are compared with DNS results. It is clear from these results that all

of the models drastically underpredict the magnitude of the normal Reynolds stress anisotropies in

compressible homogeneous shear 
ow; on the other hand, the models overpredict the magnitude of

the Reynolds shear stress anisotropy. The DNS results of Blaisdell et al [3] indicate that the nor-

mal Reynolds stress anisotropies in compressible homogeneous shear 
ow are nearly twice as large

as their incompressible counterparts [23]; the magnitude of the Reynolds shear stress anisotropy
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is approximately 25% lower for compressible homogeneous shear 
ow. Even with the addition

of what appear to be reasonably sound models for the compressible dissipation and pressure di-

latation, variable density extensions of the LRR, FLT and SSG models are unable to predict the

dramatic changes in the Reynolds stress anisotropies that arise from compressible e�ects. This can

be seen more clearly from Tables 1-3 where the model predictions for the equilibrium Reynolds

stress anisotropies are compared with DNS results for incompressible homogeneous shear 
ow and

for compressible homogeneous shear 
ow, wherein both the dilatational models of Sarkar and Ze-

man are implemented. It is obvious from these results that the individual model predictions are in

reasonably close range for both compressible and incompressible homogeneous shear 
ow whereas

the DNS results are drastically di�erent.

5. CONCLUSION

A systematic evaluation of recently proposed Reynolds stress turbulence closures for high-speed

compressible 
ows has been conducted with the use of the DNS data base of Blaisdell et al [3]

for compressible homogeneous shear 
ow. The recently developed dilatational models of Sarkar et

al [14, 15] and Zeman [16, 17] were tested in conjunction with variable density extensions of two

of the newest models for the pressure-strain correlation: the Fu, Launder and Tselepidakis (FLT)

model and the Speziale, Sarkar and Gatski (SSG) model. Consistent with the �ndings of earlier

studies, it was found that when dilatational e�ects arising from the compressible dissipation and

the pressure-dilatation correlation are neglected, variable density extensions of existing Reynolds

stress turbulence closures yield poor predictions for compressible homogeneous shear 
ow. DNS

results indicate that compressibility e�ects lead to a substantial reduction in the growth rate of the

turbulent kinetic energy { a feature that cannot be predicted by Reynolds stress turbulence closures

wherein turbulent dilatational terms are neglected. With the addition of the compressible dissipa-

tion and pressure-dilatation models of Sarkar and Zeman, the newest Reynolds stress turbulence

closures are able to accurately predict the reduction in the growth rate of the turbulent kinetic

energy. Accurate results are also obtained for the turbulent Mach number which is overpredicted

by 100% when turbulent dilatational terms are neglected. There appears to be little doubt these

dilatational models represent signi�cant progress in the modeling of compressible homogeneous

turbulence.

Although the inclusion of the newest compressible dissipation and pressure-dilatation models

in Reynolds stress turbulence closures leads to substantially improved predictions for the turbu-

lent kinetic energy and Mach number, some substantial de�ciencies still remain for the proper

description of compressible homogeneous shear 
ow. DNS results indicate that compressibility

e�ects in homogeneous shear 
ow lead to a substantial modi�cation of the equilibrium Reynolds

stress anisotropies wherein the magnitude of the normal components are nearly doubled and the
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magnitude of the shear component is reduced by approximately 25%. Even when compressible

dissipation and pressure-dilatation models are added, the Reynolds stress turbulence closures con-

sidered in this study are still unable to predict this e�ect. This is due to de�ciencies in the modeling

of the deviatoric part of the pressure-strain correlation which controls the level of Reynolds stress

anisotropy. The pressure-strain models considered herein { as well as those used in virtually all

previous studies of compressible turbulence { do not account for explicit compressible e�ects. This

is a reasonable approximation for compressible 
ows where the turbulent Mach number Mt < 0:3:

a restriction that allows for the Morkovin [24] hypothesis to be invoked. However, in compressible

homogeneous shear 
ow the turbulence Mach number achieves an equilibrium value of approxi-

mately 0.6 { a value that is too large to neglect explicit compressible e�ects in the modeling of

the pressure-strain correlation. The standard hierarchy of pressure-strain models is based on an

analysis of the incompressible Poisson equation for the pressure that does not apply to high-speed

compressible 
ows. For these 
ows, the pressure is determined from a thermodynamic equation

of state unlike the pressure in incompressible 
ows which is a Lagrange multiplier determined by

the solenoidal constraint on the velocity �eld. If high-speed turbulent shear 
ows are to be better

described, entirely new models are needed for the deviatoric part of the pressure-strain correlation

that incorporate some compressible turbulence physics.
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Equilibrium LRR Model FLT Model SSG Model DNS Data

Values

b11 0.155 0.208 0.219 0.215

b12 {0.187 {0.146 {0.164 {0.158

b22 {0.121 {0.144 {0.146 {0.153

b33 {0.034 {0.064 {0.073 {0.062

Table 1. Comparison of the model predictions for the equilibrium Reynolds stress anisotropies with

the DNS results of Rogers et al [23] for incompressible homogeneous shear 
ow.

Equilibrium LRR Model FLT Model SSG Model DNS Data

Values

b11 0.166 0.189 0.230 0.424

b12 {0.187 {0.148 {0.165 {0.118

b22 {0.130 {0.138 {0.148 {0.236

b33 {0.036 {0.051 {0.082 {0.188

Table 2. Comparison of the compressible model predictions (using the dilatational terms of Sarkar

et al [14, 15]) for the equilibrium Reynolds stress anisotropies with the DNS results of Blaisdell et

al [3] for the compressible homogeneous shear 
ow.
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Equilibrium LRR Model FLT Model SSG Model DNS Data

Values

b11 0.167 0.187 0.231 0.424

b12 {0.191 {0.148 {0.167 {0.118

b22 {0.131 {0.137 {0.148 {0.236

b33 {0.036 {0.050 {0.083 {0.188

Table 3. Comparison of the compressible model predictions (using the dilatational terms of Zeman

[16, 17]) for the equilibrium Reynolds stress anisotropies with the DNS results of Blaisdell et al [3]

for compressible homogeneous shear 
ow.
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Figure 1. Time evolution of the turbulent kinetic energy: Comparison of the model predictions

(without explicit dilatational terms) and the DNS results of Blaisdell et al [3] for compressible

homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model; (3) DNS

results.

Figure 2. Time evolution of the turbulent dissipation rate: Comparison of the model predictions

(without explicit dilatational terms) and the DNS results of Blaisdell et al [3] for compressible

homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model; (3) DNS

results.

Figure 3. Time evolution of the turbulent Mach number: Comparison of the model predictions

(without explicit dilatational terms) and the DNS results of Blaisdell et al [3] for compressible

homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model; (3) DNS

results.

Figure 4. Time evolution of the turbulent kinetic energy: Comparison of the model predictions

(with the dilatational terms of Sarkar et al [14, 15]) and the DNS results of Blaisdell et al [3] for

compressible homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model;

(3) DNS results.

Figure 5. Time evolution of the turbulent dissipation rate: Comparison of the model predictions

(with the dilatational terms of Sarkar et al [14, 15]) and the DNS results of Blaisdell et al [3] for

compressible homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model;

(3) DNS results.

Figure 6. Time evolution of the turbulent Mach number: Comparison of the model predictions

(with the dilatational terms of Sarkar et al [14, 15]) and the DNS results of Blaisdell et al [3] for

compressible homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model;

(3) DNS results.

Figure 7. Time evolution of the turbulent kinetic energy: Comparison of the model predictions (with

the dilatational terms of Zeman [16, 17]) and the DNS results of Blaisdell et al [3] for compressible

homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model; (3) DNS

results.

Figure 8. Time evolution of the turbulent dissipation rate: Comparison of the model predictions

(with the dilatational terms of Zeman [16, 17]) and the DNS results of Blaisdell et al [3] for
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compressible homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG

Model; (3) DNS results.

Figure 9. Time evolution of the turbulent Mach number: Comparison of the model predictions (with

the dilatational terms of Zeman [16, 17]) and the DNS results of Blaisdell et al [3] for compressible

homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model; (3) DNS

results.

Figure 10. Time evolution of the Reynolds stress anisotropies: Comparison of the model predictions

(with the dilatational terms of Sarkar et al [14, 15]) and the DNS results of Blaisdell et al [3] for

compressible homogeneous shear 
ow. (| |) LRR Model; (- - - -) FLT Model; (||-) SSG Model;

(3) DNS results. (a) b11, (b) b22 and (c) b12.
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